A Comparison of Covariate-based Predictition Methods for FIFA World Cups

#### A. Groll

Faculty of Statistics, TU Dortmund University

(joint work with J. Abedieh, C. Ley, A. Mayr, T. Kneib, G. Schauberger, G. Tutz & H. Van Eetvelde)

> **Zurich R User Group Meetup** October 25<sup>th</sup> 2018, University of Zurich



### Who will celebrate?



Sources: youtube.com,EMAJ Magazine,youfrisky.com,Bailiwick Express

### Who will cry?



Sources: youtube.com,pinterest,BBC,Daily Mail

# Theoretical Background

## Part I: Regression-based Methods

### Model for international soccer tournaments

$$y_{ijk}|\mathbf{x}_{ik}, \mathbf{x}_{jk} \sim Pois(\lambda_{ijk}) \quad i, j \in \{1, \dots, n\}, i \neq j$$
$$\lambda_{ijk} = \exp(\beta_0 + (\mathbf{x}_{ik} - \mathbf{x}_{jk})^\top \boldsymbol{\beta})$$

- n: Number of teams
- $y_{ijk}$ : Number of goals scored by team *i* against opponent *j* at tournament *k*
- $x_{ik}$ ,  $x_{jk}$ : Covariate vectors of team *i* and opponent *j* varying over tournaments
  - *B*: Parameter vector of covariate effects

### Regularized estimation

Maximize penalized log-likelihood

$$I_{p}(\beta_{0}, \boldsymbol{\beta}) = I(\beta_{0}, \boldsymbol{\beta}) - \lambda J(\boldsymbol{\beta})$$

### Regularized estimation

Maximize penalized log-likelihood

$$I_{p}(\beta_{0},\boldsymbol{\beta}) = I(\beta_{0},\boldsymbol{\beta}) - \lambda J(\boldsymbol{\beta})$$
$$= I(\beta_{0},\boldsymbol{\beta}) - \lambda \sum_{i=1}^{p} |\beta_{i}|,$$

with lasso penalty term (Tibshirani, 1996):

$$J(\boldsymbol{\beta}) = \sum_{i=1}^{p} |\beta_i|.$$

The model can be estimated with the R-package glmnet (Friedman et al., 2010).

### Regularized estimation

Maximize penalized log-likelihood

$$I_{p}(\beta_{0},\boldsymbol{\beta}) = I(\beta_{0},\boldsymbol{\beta}) - \lambda J(\boldsymbol{\beta})$$
$$= I(\beta_{0},\boldsymbol{\beta}) - \lambda \sum_{i=1}^{p} |\beta_{i}|,$$

with lasso penalty term (Tibshirani, 1996):

$$J(\boldsymbol{\beta}) = \sum_{i=1}^{p} |\beta_i|.$$

The model can be estimated with the R-package glmnet (Friedman et al., 2010).

Versions used for: EURO 2012 (Groll and Abedieh, 2013); World Cup 2014 (Groll et al., 2015); EURO 2016 (Groll et al., 2018)

## Part II: Ranking Methods

### Independent Poisson ranking model

$$\begin{array}{lll} Y_{ijm} & \sim & \textit{Pois}(\lambda_{ijm}) \,, \\ \lambda_{ijm} & = & \exp\left(\beta_0 + (r_i - r_j) + h \cdot \mathbb{I}(\text{team } i \text{ playing at home})\right) \end{array}$$

- n: Number of teams
- M: Number of matches
- $y_{ijm}$ : Number of goals scored by team *i* against opponent *j* in match *m*
- $r_i, r_j$ : strengths / ability parameters of team *i* and team *j* 
  - *h*: home effect; added if team *i* plays at home

### Independent Poisson ranking model

#### Likelihood function:

$$L = \prod_{m=1}^{M} \left( \frac{\lambda_{ijm}^{y_{ijm}}}{y_{ijm}!} \exp(-\lambda_{ijm}) \cdot \frac{\lambda_{jim}^{y_{jim}}}{y_{jim}!} \exp(-\lambda_{jim}) \right)^{w_{type,m} \cdot w_{time,m}},$$

with weights

$$w_{time,m}(t_m) = \left(\frac{1}{2}\right) \frac{t_m}{\text{Half period}}$$

and

 $w_{type,m} \in \{1,2,3,4\}$  (depending on type of match).

### Independent Poisson ranking model

#### Likelihood function:

$$L = \prod_{m=1}^{M} \left( \frac{\lambda_{ijm}^{y_{ijm}}}{y_{ijm}!} \exp(-\lambda_{ijm}) \cdot \frac{\lambda_{jim}^{y_{jim}}}{y_{jim}!} \exp(-\lambda_{jim}) \right)^{w_{type,m} \cdot w_{time,m}},$$

with weights

$$w_{time,m}(t_m) = \left(\frac{1}{2}\right) \frac{\frac{t_m}{\text{Half period}}}{\text{Half period}}$$

and

 $w_{type,m} \in \{1,2,3,4\} \qquad (\text{depending on type of match})\,.$ 

Different extensions, for example, **bivariate Poisson models**. Ley et al. (2018) show that bivariate Poisson with Half Period of 3 years is best for prediction.

## Part III: Random Forests

- introduced by Breiman (2001)
- principle: aggregation of (large) number of classification / regression trees
  - $\implies$  can be used both for classification & regression purposes

- introduced by Breiman (2001)
- principle: aggregation of (large) number of classification / regression trees

 $\implies$  can be used both for classification & regression purposes

• **final predictions**: single tree predictions are aggregated, either by majority vote (classification) or by averaging (regression)

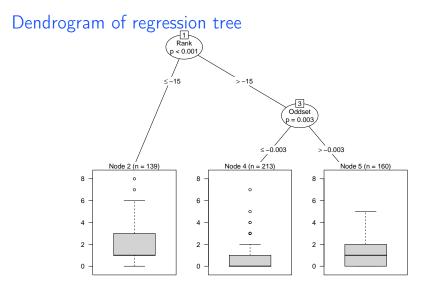
- introduced by Breiman (2001)
- principle: aggregation of (large) number of classification / regression trees
   and be used both for classification & regression purposes
- **final predictions**: single tree predictions are aggregated, either by majority vote (classification) or by averaging (regression)
- feature space is partitioned recursively, each partition has its own prediction

- introduced by Breiman (2001)
- principle: aggregation of (large) number of classification / regression trees
   and be used both for classification & regression purposes
- **final predictions**: single tree predictions are aggregated, either by majority vote (classification) or by averaging (regression)
- feature space is partitioned recursively, each partition has its own prediction
- find split with strongest difference between the two new partitions w.r.t. some criterion

- introduced by Breiman (2001)
- principle: aggregation of (large) number of classification / regression trees
   and be used both for classification & regression purposes
- **final predictions**: single tree predictions are aggregated, either by majority vote (classification) or by averaging (regression)
- feature space is partitioned recursively, each partition has its own prediction
- find split with strongest difference between the two new partitions w.r.t. some criterion
- Observations within the same partition as similar as possible, observations from different partitions very different (w.r.t. response variable)

- introduced by Breiman (2001)
- principle: aggregation of (large) number of classification / regression trees
   and be used both for classification & regression purposes
- **final predictions**: single tree predictions are aggregated, either by majority vote (classification) or by averaging (regression)
- feature space is partitioned recursively, each partition has its own prediction
- find split with strongest difference between the two new partitions w.r.t. some criterion
- Observations within the same partition as similar as possible, observations from different partitions very different (w.r.t. response variable)
- a single tree is usually pruned (lower variance but increases bias)

- introduced by Breiman (2001)
- principle: aggregation of (large) number of classification / regression trees
   and be used both for classification & regression purposes
- **final predictions**: single tree predictions are aggregated, either by majority vote (classification) or by averaging (regression)
- feature space is partitioned recursively, each partition has its own prediction
- find split with strongest difference between the two new partitions w.r.t. some criterion
- Observations within the same partition as similar as possible, observations from different partitions very different (w.r.t. response variable)
- a single tree is usually pruned (lower variance but increases bias)
- visualized in dendrogram



Exemplary regression tree for FIFA World Cup 2002 – 2014 data using the function ctree from the R-package party (Hothorn et al., 2006). **Response**: *Number of goals*; **predictors**: only *FIFA Rank and Oddset* are used.

- repeatedly grow different regression trees
- main goal: decrease variance

- repeatedly grow different regression trees
- main goal: decrease variance  $\implies$  decrease correlation between single trees.

- repeatedly grow different regression trees
- main goal: decrease variance  $\implies$  decrease correlation between single trees.
- $\implies$  two different randomisation steps:
  - 1) trees are not applied to the original sample but to **bootstrap samples** or random subsamples of the data.
  - 2) at each node a **(random) subset of the predictors** is drawn that are used to find the best split.

- repeatedly grow different regression trees
- main goal: decrease variance  $\implies$  decrease correlation between single trees.
- $\implies$  two different randomisation steps:
  - 1) trees are not applied to the original sample but to **bootstrap samples** or random subsamples of the data.
  - 2) at each node a **(random) subset of the predictors** is drawn that are used to find the best split.
- by de-correlating and combining many trees ⇒ predictions with low bias and reduced variance

### Random Forests for Soccer

- response: metric variable Number of Goals
- predefined number of trees B (e.g., B = 5000) is fitted based on (bootstrap samples of) the training data
- prediction of new observation: covariate values are dropped down each of the regression trees, resulting in *B* predictions => average
- use predicted expected value as event rate  $\hat{\lambda}$  of a Poisson distribution  $Po(\lambda)$

### Random Forests for Soccer

- response: metric variable Number of Goals
- predefined number of trees B (e.g., B = 5000) is fitted based on (bootstrap samples of) the training data
- prediction of new observation: covariate values are dropped down each of the regression trees, resulting in *B* predictions =>> average
- use predicted expected value as event rate  $\hat{\lambda}$  of a Poisson distribution  $Po(\lambda)$
- 2 slightly different variants:
  - 1) classical RF algorithm proposed by Breiman (2001) from the R-package ranger (Wright and Ziegler, 2017)
  - 2) RFs based conditional inference trees: cforest from the party package (Hothorn et al., 2006)

# Application to FIFA World Cups

Data basis: Word Cups 2002-2014

#### Data basis: Word Cups 2002-2014

#### • Economic Factors:

GDP per capita, population

#### Data basis: Word Cups 2002-2014

### • Economic Factors:

GDP per capita, population

#### • Sportive Factors:

bookmaker's odds (Oddset), FIFA rank

#### Data basis: Word Cups 2002-2014

#### • Economic Factors: GDP per capita, population

#### • Sportive Factors: bookmaker's odds (Oddset), FIFA rank

#### • Home advantage:

host of the world cup, same continent as host, continent

#### Data basis: Word Cups 2002-2014

#### • Economic Factors: GDP per capita, population

#### Sportive Factors: bookmaker's odds (Oddset), FIFA rank

#### • Home advantage:

host of the world cup, same continent as host, continent

#### • Factors describing the team's structure

(Second) Maximum number of teammates, average age, number of Champions League & Europa League players, number of players abroad

#### Data basis: Word Cups 2002-2014

#### Economic Factors: GDP per capita, population

#### Sportive Factors: bookmaker's odds (Oddset), FIFA rank

#### • Home advantage:

host of the world cup, same continent as host, continent

#### • Factors describing the team's structure (Second) Maximum number of teammates, average age, number of Champions League & Europa League players, number of players abroad

#### Factors describing the team's coach age, nationality, tenure

#### Data basis: Word Cups 2002-2014

#### Economic Factors: GDP per capita, population

#### Sportive Factors: bookmaker's odds (Oddset), FIFA rank

#### • Home advantage:

host of the world cup, same continent as host, continent

#### • Factors describing the team's structure (Second) Maximum number of teammates, average age, number of Champions League & Europa League players, number of players abroad

## • Factors describing the team's coach age, nationality, tenure

# All variables are incorporated as differences between the team whose goals are considered and its opponent!

### Extract of the design matrix

| FRA   | 0:0 | 📒 URU |
|-------|-----|-------|
| URU 🚐 | 1:2 | DEN   |

| Team    | Age  | Rank | Oddset |    |
|---------|------|------|--------|----|
| France  | 28.3 | 1    | 0.149  |    |
| Uruguay | 25.3 | 24   | 0.009  |    |
| Denmark | 27.4 | 20   | 0.012  |    |
| ÷       | :    | :    | :      | ۰. |

### Extract of the design matrix

| FRA 📕 | 0:0 | 📒 URU |
|-------|-----|-------|
| URU 🚐 | 1:2 | DEN   |

| Team    | Age  | Rank | Oddset |    |
|---------|------|------|--------|----|
| France  | 28.3 | 1    | 0.149  |    |
| Uruguay | 25.3 | 24   | 0.009  |    |
| Denmark | 27.4 | 20   | 0.012  |    |
| :       | :    | :    | :      | ۰. |

| Goals | Team    | Opponent | Age   | Rank | Oddset |    |
|-------|---------|----------|-------|------|--------|----|
| 0     | France  | Uruguay  | 3.00  | -23  | 0.140  |    |
| 0     | Uruguay | France   | -3.00 | 23   | -0.140 |    |
| 1     | Uruguay | Denmark  | -2.10 | 4    | -0.003 |    |
| 2     | Denmark | Uruguay  | 2.10  | -4   | 0.003  |    |
| :     | :       | :        | :     | :    | :      | ۰. |

Comparison of predictive performance: WC 2002-2014 data

- 1. Form a training data set containing 3 out of 4 World Cups.
- 2. Fit each of the methods to the training data.
- 3. Predict the left-out World Cup using each of the prediction methods.
- 4. Iterate steps 1-3 such that each World Cup is once the left-out one.
- 5. Compare predicted and real outcomes for all prediction methods.

Comparison of predictive performance: WC 2002-2014 data

- 1. Form a training data set containing 3 out of 4 World Cups.
- 2. Fit each of the methods to the training data.
- 3. Predict the left-out World Cup using each of the prediction methods.
- 4. Iterate steps 1-3 such that each World Cup is once the left-out one.
- 5. Compare predicted and real outcomes for all prediction methods.

We combine both the random forest and the LASSO with the ability estimates from the ranking method!

#### Prediction of match outcomes

- true ordinal match outcomes: ỹ<sub>1</sub>,..., ỹ<sub>N</sub> with ỹ<sub>i</sub> ∈ {1,2,3}, for all matches N from the 4 World Cups.
- predicted probabilities  $\hat{\pi}_{1i}, \hat{\pi}_{2i}, \hat{\pi}_{3i}, i = 1, \dots, N$ ,
- Let  $G_{1i}$  and  $G_{2i}$  denote the goals scored by 2 competing teams in match i  $\implies$  compute  $\hat{\pi}_{1i} = P(G_{1i} > G_{2i}), \hat{\pi}_{2i} = P(G_{1i} = G_{2i})$  and  $\hat{\pi}_{3i} = P(G_{1i} < G_{2i})$ based on the corresponding Poisson distributions  $G_{1i} \sim Po(\hat{\lambda}_{1i})$  and  $G_{2i} \sim Po(\hat{\lambda}_{2i})$  with estimates  $\hat{\lambda}_{1i}$  and  $\hat{\lambda}_{2i}$  (Skellam distribution)
- **benchmark**: **bookmakers**  $\implies$  compute the 3 quantities  $\tilde{\pi}_{ri} = 1/\text{odds}_r$ ,  $r \in \{1, 2, 3\}$ , normalize with  $c_i \coloneqq \sum_{r=1}^3 \tilde{\pi}_{ri}$  (adjust for bookmakers' margins)

 $\implies$  estimated probabilities  $\hat{\pi}_{ri} = \tilde{\pi}_{ri}/c_i$ 

#### Prediction of match outcomes

#### 3 Performance measures:

(a) **multinomial** *likelihood* (probability of correct prediction): for single match defined as

$$\hat{\pi}_{1i}^{\delta_{1\tilde{y}_{i}}} \hat{\pi}_{2i}^{\delta_{2\tilde{y}_{i}}} \hat{\pi}_{3i}^{\delta_{3\tilde{y}_{i}}},$$

with  $\delta_{ri}$  denoting Kronecker's delta

(b) classification rate: is match *i* correctly classified using the indicator function

$$\mathbb{I}(\tilde{y}_i = \operatorname*{arg\,max}_{r \in \{1,2,3\}} (\hat{\pi}_{ri}))$$

(c) rank probability score (RPS; explicitly accounts for the ordinal structure):

$$\frac{1}{3-1}\sum_{r=1}^{3-1} \left(\sum_{l=1}^r \hat{\pi}_{li} - \delta_{l\tilde{y}_i}\right)^2$$

## Prediction of match outcomes

|                      | Likelihood | Class. Rate | RPS   |
|----------------------|------------|-------------|-------|
| Hybrid Random Forest | 0.419      | 0.556       | 0.187 |
| Random Forest        | 0.410      | 0.548       | 0.192 |
| Ranking              | 0.415      | 0.532       | 0.190 |
| Lasso                | 0.419      | 0.524       | 0.198 |
| Hybrid Lasso         | 0.429      | 0.540       | 0.194 |
| Bookmakers           | 0.425      | 0.524       | 0.188 |

Comparison of different prediction methods for ordinal outcome based on multinomial likelihood, classification rate and ranked probability score (RPS)

## Prediction of exact numbers of goals

- let now y<sub>ijk</sub>, for i, j = 1,..., n and k ∈ {2002, 2006, 2010, 2014}, denote the observed number of goals scored by team i against team j in tournament k
- *ŷ*<sub>ijk</sub> the corresponding predicted value
- 2 quadratic errors:  $(y_{ijk} \hat{y}_{ijk})^2$  and  $((y_{ijk} y_{jik}) (\hat{y}_{ijk} \hat{y}_{jik}))^2$

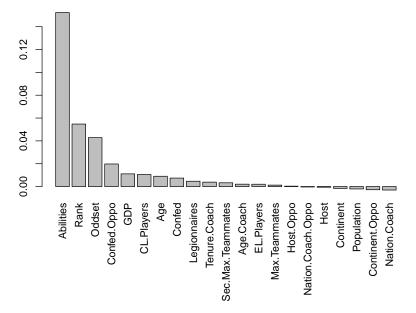
# Prediction of exact numbers of goals

|                      | Goal Difference | Goals |
|----------------------|-----------------|-------|
| Hybrid Random Forest | 2.473           | 1.296 |
| Random Forest        | 2.543           | 1.330 |
| Ranking              | 2.560           | 1.349 |
| Lasso                | 2.835           | 1.421 |
| Hybrid Lasso         | 2.809           | 1.427 |

Comparison of different prediction methods for the exact number of goals and the goal difference based on  $\mathsf{MSE}$ 

# Prediction of FIFA World Cup 2018

# Variable importance



# Winning probabilities

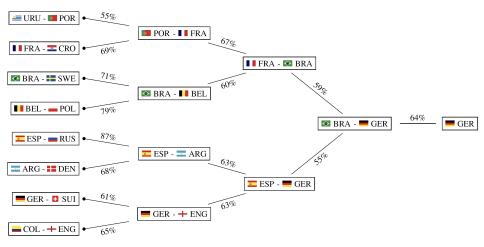
|          |   |            | Round<br>of 16 | Quarter<br>finals | Semi<br>finals | Final        | World<br>Champion | Oddset       |
|----------|---|------------|----------------|-------------------|----------------|--------------|-------------------|--------------|
| 1.       | ŝ | ESP        | 88.4           | 73.1              | 47.9           | 28.9         | 17.8              | 11.8         |
| 2.<br>3. | • | GER<br>BRA | 86.5<br>83.5   | 58.0<br>51.6      | 39.8<br>34.1   | 26.3<br>21.9 | 17.1<br>12.3      | 15.0<br>15.0 |
| 4.       |   | FRA        | 85.5           | 56.1              | 36.9           | 20.8         | 11.2              | 11.8         |
| 5.       |   | BEL        | 86.3           | 64.5              | 35.7           | 20.4         | 10.4              | 8.3          |
| 6.       | • | ARG        | 81.6           | 50.5              | 29.8           | 15.2         | 7.3               | 8.3          |
| 7.       | + | ENG        | 79.8           | 57.0              | 29.8           | 15.6         | 7.1               | 4.6          |
| 8.       | ۲ | POR        | 67.5           | 46.1              | 19.8           | 7.3          | 2.5               | 3.8          |
| 9.       | 8 | CRO        | 65.9           | 30.8              | 15.6           | 6.0          | 2.2               | 3.0          |
| 10.      | + | SUI        | 58.9           | 30.6              | 13.1           | 5.6          | 2.2               | 1.0          |
| 11.      |   | COL        | 79.2           | 33.1              | 14.0           | 5.7          | 2.1               | 1.8          |
| 12.      |   | DEN        | 59.0           | 26.1              | 12.4           | 4.8          | 1.7               | 1.1          |
| ÷        | : | :          | :              | :                 | :              | ÷            | :                 | :            |

# Most probable group stage

| Group A<br>28.7% | Group B<br>38.5% | Group C<br>31.5% | Group D<br>30.7% |
|------------------|------------------|------------------|------------------|
| 1. 블 URU         | 1. 🏝 ESP         | 1. FRA           | 1. 💶 ARG         |
| 2. 💻 RUS         | 2. 🧧 POR         | 2. <b>DEN</b>    | 2. 🌉 CRO         |
| KSA              | MOR              | aus 🗕            | ICE              |
| EGY              | 💶 IRN            | PER              | NGA              |

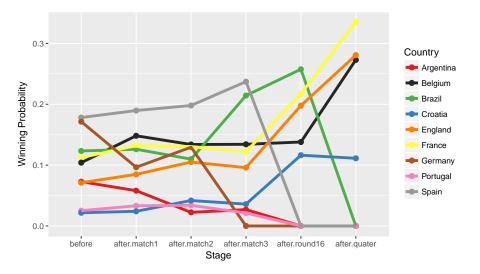
| Group E<br>29.0% | Group F<br>29.9% | Group G<br>38.1% | Group H<br>26.5% |
|------------------|------------------|------------------|------------------|
|                  |                  |                  | 1                |
| 1. 😒 BRA         | 1. GER           | 1. <b>BEL</b>    | 1. 📥 COL         |
| 2. 🛃 SUI         | 2. 🎫 SWE         | 2. 🛨 ENG         | 2. 💻 POL         |
| CRC              | MEX              | PAN              | SEN              |
| SRB              | 🔅 KOR            | TUN              | • JPN            |
|                  |                  |                  |                  |

#### Most probable knockout stage



#### Winning probabilities over time

Time course of the winning probabilities for the nine (originally) favored teams:



# Performance I

|                      | Likelihood | Class. Rate | RPS   |
|----------------------|------------|-------------|-------|
| Hybrid Random Forest | 0.440      | 0.609       | 0.188 |
| Random Forest        | 0.433      | 0.609       | 0.191 |
| Lasso                | 0.424      | 0.547       | 0.207 |
| Hybrid Lasso         | 0.434      | 0.609       | 0.201 |
| Ranking              | 0.423      | 0.578       | 0.197 |
| Bookmakers           | 0.438      | 0.562       | 0.194 |
|                      |            |             |       |

# Performance I

| Lik                  | elihood | Class. R  | ate   | RPS   |
|----------------------|---------|-----------|-------|-------|
| Hybrid Random Forest | 0.440   | 0.0       | 609   | 0.188 |
| Random Forest        | 0.433   | 0.0       | 609   | 0.191 |
| Lasso                | 0.424   | 0.!       | 547   | 0.207 |
| Hybrid Lasso         | 0.434   | 0.0       | 609   | 0.201 |
| Ranking              | 0.423   | 0.!       | 578   | 0.197 |
| Bookmakers           | 0.438   | 0.!       | 0.562 |       |
|                      | Goal D  | ifference | Goa   | als   |
| Hybrid Random Forest |         | 1.181     | 2.1   | 13    |
| Random Forest        |         | 1.209     | 2.1   | 77    |
| Lasso                |         | 1.216     | 2.3   | 33    |
| Hybrid Lasso         |         | 1.187     | 2.2   | 70    |
| Ranking              |         | 1.253     | 2.1   | 71    |

# Performance II

#### Final standing in forecast competition fifaexperts.com (> 500 participants):

| Submit your forecasts                                                                               | Check your results | Scoreboard | Your league |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|--------------------|------------|-------------|--|--|--|--|--|
| 1. Espertes on Núne                                                                                 | rac: 1650 painta   |            |             |  |  |  |  |  |
| <ol> <li>Esportes em Números: 4650 points</li> <li>Andreas Groll: 4644 points</li> </ol>            |                    |            |             |  |  |  |  |  |
| 3. Danilo Lopes: 4634 points                                                                        |                    |            |             |  |  |  |  |  |
| 4. Natanael Prata: 4634 points                                                                      |                    |            |             |  |  |  |  |  |
| 5. Chance de Gol: 4611 points                                                                       |                    |            |             |  |  |  |  |  |
| 6. Wilson Chaves: 4597 points                                                                       |                    |            |             |  |  |  |  |  |
| 7. Sigma Benedek: 4589 points                                                                       |                    |            |             |  |  |  |  |  |
| 8. Márcio Diniz: 4587 points                                                                        |                    |            |             |  |  |  |  |  |
| 9. Francesco Beatrice: 4574 points 10. Alun Owen: 4565 points                                       |                    |            |             |  |  |  |  |  |
| 11. Tolstói Tói: 4558 points                                                                        |                    |            |             |  |  |  |  |  |
| 12. Magne Aldrin: 4557 points<br>A. Groll (TU Dortmund) Predicting International Soccer Tournaments |                    |            |             |  |  |  |  |  |

# Performance III

Final standing in forecast competition Kicktipp (with colleagues):

| Gesamtübersicht   |               |           |             |        |    |    |    |    |    |    |            |    |    |      |     |
|-------------------|---------------|-----------|-------------|--------|----|----|----|----|----|----|------------|----|----|------|-----|
| Spieltagspunkte 🔻 |               |           |             |        |    |    |    |    |    | ≡  |            |    |    |      |     |
| Pos               | Name          | Spie<br>1 | eltage<br>2 | 9<br>3 | 4  | 5  | 6  | 7  | Ac | Vi | На         | Fi | В  | S    | G   |
| 1                 | stats_model   | 14        | 13          | 14     | 9  | 12 | 10 | 19 | 13 | 7  | 4          | 4  | 28 | 2,50 | 147 |
| 2                 | Hendrik       | 20        | 14          | 9      | 9  | 11 | 5  | 8  | 12 | 9  | 4          | 0  | 28 | 1,83 | 129 |
| 3                 | Katharina     | 12        | 11          | 9      | 10 | 15 | 10 | 11 | 16 | 7  | 3          | 2  | 20 | 1,50 | 126 |
| 4                 | Katrin        | 12        | 14          | 8      | 6  | 12 | 4  | 15 | 18 | 7  | 4          | 2  | 24 | 0,83 | 126 |
| 5                 | Lukas         | 10        | 12          | 9      | 6  | 9  | 6  | 4  | 15 | 7  | 3          | 6  | 32 | 1,00 | 119 |
| 6                 | Jona          | 10        | 9           | 6      | 10 | 9  | 6  | 11 | 12 | 8  | 6          | 7  | 24 | 1,00 | 118 |
| 7                 | Hilsi         | 16        | 8           | 7      | 7  | 10 | 2  | 6  | 14 | 9  | 7          | 2  | 24 | 1,50 | 112 |
| 8                 | Borussenengel |           | 10          | 10     | 11 | 14 | 2  | 5  | 14 | 5  | 4<br>ments | 2  | 16 | 1,00 | 106 |

# Performance IV

Final standing in WC-forecast competition from Prof. Claus Ekstrøm :

|                                      | log.loss |
|--------------------------------------|----------|
|                                      |          |
| Groll, Ley, Schauberger, VanEetvelde | -11.69   |
| Ekstrom (Skellam)                    | -11.72   |
| Ekstrom (ELO)                        | -13.48   |
| Random guessing                      | -14.56   |

And the winner is the prediction by **Groll**, **Ley**, **Schauberger**, **VanEetvelde** (although not by much). Well done! Time to prepare the prediction algorithms for the next tournament – and hopefully we can get more people to participate.

#### Regarded models & predictive performance:

- (Regularized) regression approaches vs. random forests vs. ranking methods
- random forests & ranking methods perform pretty good (almost as good as bookmakers)

#### Regarded models & predictive performance:

- (Regularized) regression approaches vs. random forests vs. ranking methods
- random forests & ranking methods perform pretty good (almost as good as bookmakers)
- $\implies$  combine random forests & ranking methods to hybrid random forest

#### Regarded models & predictive performance:

- (Regularized) regression approaches vs. random forests vs. ranking methods
- random forests & ranking methods perform pretty good (almost as good as bookmakers)
- $\implies$  combine random forests & ranking methods to hybrid random forest
- → combination outperforms bookmakers (on FIFA WC 2002 2014 data)

#### Regarded models & predictive performance:

- (Regularized) regression approaches vs. random forests vs. ranking methods
- random forests & ranking methods perform pretty good (almost as good as bookmakers)
- $\implies$  combine random forests & ranking methods to hybrid random forest
- $\implies$  combination outperforms bookmakers (on FIFA WC 2002 2014 data)

#### FIFA WC 2018 prediction:

• Spain favorite with 17.8%, closely follow by Germany (17.1%); then: Brazil, France, Belgium (**before the tournament start**)

#### Regarded models & predictive performance:

- (Regularized) regression approaches vs. random forests vs. ranking methods
- random forests & ranking methods perform pretty good (almost as good as bookmakers)
- $\implies$  combine random forests & ranking methods to hybrid random forest
- $\implies$  combination outperforms bookmakers (on FIFA WC 2002 2014 data)

#### FIFA WC 2018 prediction:

- Spain favorite with 17.8%, closely follow by Germany (17.1%); then: Brazil, France, Belgium (**before the tournament start**)
- Performance: Germany & Spain already dropped out; **but**: very good performance **on average**

#### Regarded models & predictive performance:

- (Regularized) regression approaches vs. random forests vs. ranking methods
- random forests & ranking methods perform pretty good (almost as good as bookmakers)
- $\implies$  combine random forests & ranking methods to hybrid random forest
- $\implies$  combination outperforms bookmakers (on FIFA WC 2002 2014 data)

#### FIFA WC 2018 prediction:

- Spain favorite with 17.8%, closely follow by Germany (17.1%); then: Brazil, France, Belgium (**before the tournament start**)
- Performance: Germany & Spain already dropped out; **but**: very good performance **on average**
- Conclusion: single match outcome / tournament winner almost impossible to predict, but in general very adequate model

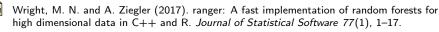
#### References

- Breiman, L. (2001). Random forests. Machine Learning 45, 5-32.
- Friedman, J., T. Hastie and R. Tibshirani (2010): Regularization paths for generalized linear models via coordinate descent, *Journal of Statistical Software*, 33, 1.
- Groll, A. and J. Abedieh (2013). Spain retains its title and sets a new record generalized linear mixed models on European football championships. *Journal of Quantitative Analysis in Sports* 9(1), 51–66.
- Groll, A., G. Schauberger, and G. Tutz (2015). Prediction of major international soccer tournaments based on team-specific regularized Poisson regression: An application to the FIFA World Cup 2014. *Journal of Quantitative Analysis in Sports* 11(2), 97–115.
- Groll, A., T. Kneib, A. Mayr, and G. Schauberger (2018). On the dependency of soccer scores – A sparse bivariate Poisson model for the UEFA European Football Championship 2016. Journal of Quantitative Analysis in Sports 14(2), 65-79.

## References II

Hothorn, T., K. Hornik, and A. Zeileis (2006). Unbiased recursive partitioning: A conditional inference framework. *Journal of Computational and Graphical Statistics* 15, 651–674.

Ley, C., T. Van de Wiele and H. Van Eetvelde (2018): Ranking soccer teams on basis of their current strength: a comparison of maximum likelihood approaches, *Statistical Modelling*, submitted.





Schauberger, G. and Groll, A. (2018). Predicting matches in international football tournaments with random forests. *Statistical Modelling*, to appear.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society Series B* 58, 267–288.



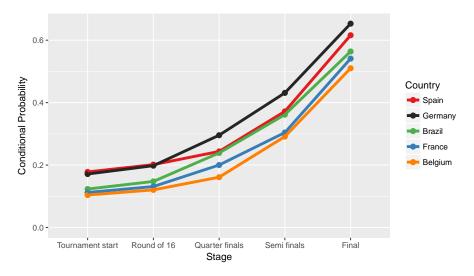
# Thank you for your attention!

(Working paper on arXiv: https:// arxiv.org/pdf/1806.03208.pdf)

Sources: Forbes, JewishNews.com

# Conditional winning probabilities

Winning probabilities conditional on reaching the single stages of the tournament for the five favored teams:



# Winning probabilities after group stage

|     |          |     | Quarter<br>finals | Semi<br>finals | Final | World<br>Champion |
|-----|----------|-----|-------------------|----------------|-------|-------------------|
| 1.  | <u>*</u> | ESP | 88.2              | 61.1           | 42.2  | 23.7              |
| 2.  |          | BRA | 79.9              | 51.2           | 35.6  | 21.4              |
| 3.  |          | BEL | 85.1              | 40.9           | 24.1  | 13.4              |
| 4.  |          | FRA | 63.4              | 43.6           | 22.1  | 12.2              |
| 5.  | +        | ENG | 71.6              | 45.4           | 20.1  | 9.6               |
| 6.  | +        | SUI | 60.6              | 24.1           | 9.7   | 3.6               |
| 7.  |          | CRO | 56.1              | 20.8           | 10.2  | 3.6               |
| 8.  | •        | ARG | 36.6              | 21.6           | 7.0   | 2.7               |
| 9.  |          | DEN | 43.9              | 15.2           | 6.8   | 2.4               |
| 10. | ۲        | POR | 55.1              | 19.0           | 5.5   | 2.1               |
| 11. |          | COL | 28.4              | 15.9           | 5.2   | 1.8               |
| 12. | -        | SWE | 39.4              | 14.7           | 5.1   | 1.5               |
| 13. | *        | URU | 44.9              | 15.8           | 4.0   | 1.4               |
| 14. | ٩        | MEX | 20.1              | 4.7            | 1.2   | 0.3               |
| 15. |          | RUS | 11.8              | 2.8            | 0.7   | 0.1               |
| 16. | ٠        | JPN | 14.9              | 3.1            | 0.6   | 0.1               |