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Why do we need interpretable machine learning 

methods?
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Source, Christoph Molnar, Interpretable Machine Learning 
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Why do we need interpretability?

• Imagine you came up with an 

algorithm that “learns” how to 

administer the exact right dose 

of pain medication automatically 

and continuously for every 

patient

• You don’t know why the 

machine administers the dose it 

does, but you know it isn’t 

random

• One day, the machine kills a 

terminally ill patient by 

administering her 17x the normal 

dose
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A case study from my work: can we use 

interpretable machine learning to better 

understand schistosomiasis and hookworm?
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What are schistosomiasis and hookworm?

Source: WHO
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Neglected tropical diseases (NTDs) cause a huge 
burden of disease

Seite 8

Huge burden: Parasitic worm infections such as schistosomiasis and intestinal 
worm infections affect more than 1 billion people globally 

Risk factors: They affect mostly people in the poorest communities and those 
without access to clean water and sanitation. The highest levels of infection are 
in school-age children

Chronic health problems and reduced productivity: Infection can lead to 
chronic illness. The worms can damage organs, such as the liver, bladder, and 
intestines, which can cause pain, fatigue, and long-term health problems.

Preventable and treatable
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Understanding of transmission is driven largely 

through modelling

To model prevalence and transmission, scientists traditionally use periodic 

school-based or community-based prevalence surveys coupled with 

remotely sensed (RS) environmental predictors

Recent innovations:

• utilizing fine resolution RS data (e.g., Landsat 8)

• employing a larger number of relevant environmental indicators derived 

from the spectral bands (e.g., modified normalized difference water index 

[MNDWI])

• using a variable distance radius to extract and aggregate environmental 

indicator variables around point-prevalence locations
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Our research question: are these models still valid 

in an era of widespread preventative 

chemotherapy?

• Setting: Ghana

• Two nationally representative school-based prevalence surveys 

conducted before (2008, n=118 schools) and after (2015, n=158 schools) 

the launch of large-scale preventive chemotherapy

• Primary outcome: prevalence of infection by S. haematobium and 

hookworm among school-age children. 

• Compared model performance before and after the national level 

intervention
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Random forest input predictors 

Packages used: caret, randomforest
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Improvement due to 

chemotherapy clear

Seite 
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However, random forest models showed better fit 

for 2008 models as compared to 2015 for both S. 

haematobium and hookworm infections
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The relative importance of different variables 

shifted- why?
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Techniques and algorithms for interpretable 

machine learning

• Decision trees

• LIME (Local Interpretable Model-Agnostic Explanations)

• SHAP (SHapley Additive exPlanations)

• ICE (Individual Conditional Expectation) and PDP (Partial Dependence 

Plot)

Seite 
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R Package:
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Partial Dependence Plot (PDP)

• A PDP shows how a specific feature or variable influences the model's 

predictions while keeping all other features constant.

• It helps you understand how changes in that variable impact the model's 

predictions, making it useful for understanding the feature's importance or 

effect on the model's performance.
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R Code to produce

mod <- Predictor$new(SCH_base_2000, data = X, y = sch_base_2000_data$sch_base)

#lst only

eff <- FeatureEffect$new(mod, feature = "lst", method = "pdp+ice", grid.size = 50)

p1 <- eff$plot() + scale_color_brewer(palette = "GnBu") + xlab("LST") + ylab(NULL)

#for multiple features at once

eff <- FeatureEffects$new(mod, method = "pdp+ice")

eff$plot() 

mytitle <- expression(paste(italic("S. haematobium"), " (2008)"))

plot(eff) +

# Adds a title

plot_annotation(title = mytitle)

Seite 
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Interpretable machine learning is key for dealing 
with complex public health data

Seite 19

IMPROVED 
DECISION-
MAKING.

IDENTIFYING RISK 
FACTORS AND 

INTERVENTIONS.

ENHANCED TRUST 
AND 

COMMUNICATION.
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